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Abstract 

The effect of randomness or jitter of the acoustic waveform on the 

spectrum of rotor impulsive noise is studied, because of its importance for 

data interpretation. 

rotor impulsive noise. The amplitude, shape, and period between occurances of 

An acoustic waveform train is modelled representing 

individual pulses are allowed to be randomized assuming normal probability 

distributions. Results, in terms of the standard deviations of the variable 

quantities, are given for the autospectrum as well as special processed 

spectra designed to separate harmonic and broadband rotor noise components. 

Consideration is given to the effect of accuracy in triggering or keying to a 

rotor one per revolution signal. An example is given showing the resultant 

spectral smearing at the high frequencies due to the pulse signal period 

variability. 

Nomenclature 

number of blades per rotor, integer 

magnitude of Pm 

expected value of argument 

- mAf, frequency of m-th analysis band, sec'l 
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frequency bandwidth, sec'l 

one-sided au tospec t r a l  func t ion ,  Eq 2, sec *Pa2 

see Eqn. 14 

pulse  i d e n t i f i e r  i n  t i m e  records ,  i n t e g e r  

i d e n t i f i e r  of da t a  sample, each sample of l eng th  T, 

i n t e g e r  

t o t a l  number of da t a  samples, i n t e g e r  

number of r o t o r  per iods per sample per iod ,  i n t e g e r  

i n t e g e r s  

sample s i z e ,  gene ra l ly  equals  an i n t e g e r  power of 2 

acous t i c  pressure time h i s t o r y ,  Pa 

= p(nAt),  da t a  sequence represent ing  p ( t ) ,  Eq. 1 

Four ie r  transform of p( t ) , sec  *Pa 

= P (fm), d i s c r e t e  Fourier  t ransform sequence, 

Eq. 1 

d i g i t i z a t i o n  time i n t e r v a l  of p ( t )  d a t a ,  s e c  

= N A t ,  sample record length ,  sec 

reference  t i m e  i n  sample pressure  h i s t o r y  

records ,  sec  

r o t o r  period of r o t a t i o n ,  sec 

s tandard  dev ia t ion  of v a r i a b l e  x 

v a r i a t i o n  of pulse  occurrence t i m e ,  s ec  

phase of Pm, rad 
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Subsc r ip t s  and Supe r sc r ip t s  

i p m '  k ic m' k m 

i 
kT 

va lue  of terms f o r  m-th frequency band f o r  t h e  

p a r t i c u l a r  i - th  pulse  of t he  k-th record sample. 

When term is averaged over ko samples, "ar1 

replaces "k". When "i" or "k" i s  removed, term is 

independent of t hese  . 
v a r i a b i l i t y  for i - t h  pu l se  of the  k-th record  

sample 

Introduction 

The s tudy  of h e l i c o p t e r  impulsive noise  involves  a n a l y s i s  of a c o u s t i c  

p re s su re  time h i s t o r i e s  and associated spec t r a .  For a d i s c r e t e  no i se  sou rce  

such as b l a d e v o r t e x  i n t e r a c t i o n  (BVI), t h e  a c o u s t i c  pressure  pulses  i n  t h e  

time h i s t o r i e s  can be randomized somewhat i n  amplitude and phase with r e s p e c t  

t o  t h e  blade passages. This occurs even i n  w e l l  con t ro l l ed  wind tunnel  

environments,  where microphones a re  f ixed  with r e spec t  t o  model r o t o r  hub 

p o s i t i o n s ,  because of unsteadiness  or  j i t t e r  i n  blade motion and blade t i p  

vo r t ex  t r a j e c t o r y .  This j i t t e r  causes s p e c t r a l  smearing and a broadband 

appearance of the  higher  harmonics. This can make i t  d i f f i c u l t  t o  i d e n t i f y  i n  

an autospectrum the  d i s c r e t e  and t r u l y  broadband ( turbulence  caused) n o i s e  

source  c o n t r i b u t i o n s  [ l ] .  In  addi t ion ,  j i t t e r  p resen t s  a major problem f o r  a 

common a n a l y s i s  procedure employed t o  "clean-up" a c o u s t i c  pressure  t i m e  

h i s t o r i e s  [ 2 ] .  The procedure involves averaging time h i s t o r i e s ,  i n  a manner 

which is keyed t o  the  s h a f t  pos i t ion  (such as through a one-per-revolution 

s i g n a l ) ,  t o  remove broadband noise r e s u l t i n g  i n  smooth acous t i c  p re s su re  
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I auto-spectra. The effect of jitter on special spectral processing, intended 

I signatures. Conceptionally spectra corresponding to these averaged signatures 

~ would represent the "discrete" contribution to the total autospectra. However 

this averaging procedure can render signatures of noticeably distorted shape 

and decreased amplitude unless jitter Is small. This concern has prompted 

~ 

caution in the selection of test conditions to analyze in this manner. Wisely 

still more caution has been exercised in presentation of special "discrete" 

spectra, being without the benefit of a quantitative understanding of the 

effect of jitter on the spectra. 

It is the purpose of this paper to provide a diagnostic tool by 

quantifying the effect of impulse signal jitter on the narrowband 

for separating the discrete from broadband components, is also considered. 

D i g i t a l  Processing and Terminology 

Digital procedures [3,41 for data processing require that acoustic 

pressure time histories p(t) be sampled at points At apart. 

becomes T - NAt where N is the sample size (typically 1024). The continuous 

p(t) is replaced by the data sequence {pn) = {p(nAt)} for 

n = 1, 2, 3, . . N. Also replacing a continuous transform P(f) is a 

The record length 

discrete Fourier transform sequence {Pm) = {P(mAf)} = {P(fm)} for m = 1, 

2, 3, . . . N. Here Af = 1/T which is the minimum bandwidth resolution. The 

sample size N induces a Nyquist cutoff or folding frequency given by fc = 

l/ZAt. Prior to digital conversion p(t) is normally low-pass filtered below 

f ,  to prevent serious aliasing errors. With 2II(mAf)nAt = 2lImn/N 

N 
1 

n= 1 
N 
1 

m-1 

P = P(fm) = At m 

and 

pn = p(nAt) = Af 

pn exp(-j2IImn/T), m = 1, 2, 3, . . . N 

Pm exp(jZIImn/T), n = 1, 2, 3, . . . N 



5 

which are Fourier transform pairs. It is seen that the data is treated as if 

- they were periodic data of period T. From the above Pm, the one-sided 

autospectral density function is 

2 * 
G = G(mAf) = r E [PmPmI m 

0 
k 

P* P 2 0 
k 

2 ' - koT k=l (kPml2 Tkzl k m k m  

Here E[ ] is the expected value of the argument and k represents the 

particular data sample each of length T. 

assumed to be large for the estimate to minimize statistical error. 

The total number of averages k, is 

Impulsive Noise Transform Decomposition 

Figure 1 illustrates two sample acoustic pressure time histories with four 

pulses in each waveform. This can be representative of a four bladed rotor 

producing BVI,  thickness, and/or loading noise. The samples shown are keyed 

to a rotor one-per-revolution signal so each t corresponds to the rotor at a 

particular azimuthal position. Each pulse, identified by the "i" notation, 

can be arbitrary in shape although similar pulses are shown. Presentations 

are also possible for a "b" bladed rotor where the sample period is T = tTr, 

Tr being the rotor period of rotation. The number of pulses seen then would 

be bt rather than 4 for each sample. As shown in Figure 1, variation in 

amplitude and time spacing can occur between the different samples. What is 

desired is to find the spectral consequences of such signal "jitter" between 

samples. 

The first step in the analysis is illustrated in Figure 2 where the 

kp(t) sample of Figure 1 is decomposed into 4 (or bt) separate pulse 

histories, i.e. 
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1 
k The history p(nAt) is taken as a pulse signature located at nominal 

I (or average) time T 

is assumed constant for perfect keying to a one-per-rev signal. The history 

2p(nAt) is that pulse at an average time of To + T/4 with variation k ~ .  k 
3 4 The same follows with kp(nAt) and p(nAt) with average spacing T/4 and k 

variations 

with a possible variation of kt. For the moment T 
0 0 

2 

The corresponding transforms are from Equation (1) kT 

which follows from the fact that p(t - to) gives a transform 
P(f)exp[-j211fto]. Equation ( 3 )  explicitly accounts for transform phase 

shifting corresponding to pressure data time shifting. The terms 

i iC exp[-j Q 1 k m  k m  

amplitude of the k-th sample of the i-th pulse. The positive magnitude 

are Fourier coefficients specifying the shape and 

i and the phase denoted by k$m. For the general case of a 

presentation of "E" periods for a "b" bladed rotor, one replaces the number 4 

in Equation ( 3 )  by b& in the two places appearing. 

* m/lTr; so if the number of revolutions analyzed E is say 2 then fm 

equals one-half that for 2x1 thereby reducing the bandwidth by a factor of 

two. 

Note then that fm = m/T 

Spectrum for No J i t t e r  Case 

For the limiting case where there is no jitter in amplitude or time for 

i i i i i the signals9 kT = 0 and ,C,eXp[-j k m  Q 1 = 

is further assumed for this example that the pulses are identical in shape and 

amplitude, f e e -  Cmexp[-j Qml * Cmexp[-j+m] for all pulses i. 

Cmexp[-j Q ~ ]  for all samples k. It 

i i 
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From Equation (3) 

11 
( i - l )T  

bll 

.- bll 
P m = i=l 1 cmexp[-j+m - j 2 n f , ( ~ ~  + 

= bllCmexp[-jt#m- j2nfmTol for m = bll, 2b1, 3bll, . 
- 0  f o r  m f bll, 2bll, 3b t ,  

It is seen t h a t  a nonzero con t r ibu t ion  is obta ined  only f o r  f r equenc ie s  t h a t  

are m u l t i p l e s  of f b ,  where f = bll/T = b/Tr which is t h e  b lade  passage b 

frequency. The auto-spectrum corresponding t o  Pm is, from Equation ( 2 ) ,  

G m = $bll Cm) f o r  m = bll, 2bE, 3bll, . 
= o  f o r  m + bll, 2bll, 3bll, . . 

2 

(4) 

Spectrum for a Normal Proability Distribution of Jitter 

Now cons ider ing  t h e  more general case where j i t t e r  is p r e s e n t ,  from 

Equation (2)  and (3 )  

0 
k 

1 k m k m  P* P 2 1  G i-- 
ko k=1 

This equat ion  f o r  Gm 

and time of occurrence are a l l  random v a r i a b l e s .  

a f u n c t i o n  of kCm, k+m, and k ~ .  

is now evaluated by assuming pu l se  amplitude,  shape, 

* 
The term IkPm kPm] is 

For t h e  moment c a l l  these i i 

gl,  b2, and s3 r e s p e c t i v e l y ,  each r ep resen t ing  bll random v a r i a b l e s  ( f o r  

1 2 bllC I ) .  k m  example = tkcm , kCm,. 9 

For l a r g e  k, 
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m e  p(,xl, x 

that IC,, x 

x ) term is the joint probability density. It is now assumed 

and x variations are uncorrelated and additionally that their 

N2' -3 

-2' -3  

variations all have normal or Gaussian distributions, i.e. 

where for each component of lcl, z2, and x -3 

exp[-(x - xo) 2 / 2  ox 2 I. 
p(x) = 

ux fTil 

Here ux is the standard deviation of x and x, is the mean value of x, i.e. 
m 

x = E[x] = I x p(x) dx 
-m 0 

and 
2 - x  . u 2 = E [(x - x0) 1 = E [ x ]  2 

X 

It is acknowledged that the properties assumed in Equations ( 7 )  and (8) are 

restrictive in allowable pulse behavior. It does, however, permit a solution 

believed to be realistic in practice. 

. ~ t  is seen from Equations ( 6 )  and ( 7 )  that G, of Equation ( 5 )  can be 

evaluated by the individual determinations of the expected values of the 

separate terms. First employing Equations ( 9 )  and (10) 

i i' = i c 2 , a 2 ,  if i = i '  E [ 'm 'm] a m i, 
b m 

= ic i;: , if i # i' a m  a m  

0 
k 

i 1 where iC = E [ Cm] = - 1 :Cm which is the average amplitude of the 

coefficient and the o-term is the standard deviation of iCm. 

ko k=1 a m  
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Next for the phase 

i' i 
+m - E [exp[-j( f ) l l  = 1 if i = i' (12) 

2 + Ui2)] 
i 1 

= expt-j( fim - a m  4 ) I  exp [- 5 (ai, 
'm om if i # i' 

where '0 is the average phase of the coefficient and the u-term its a m  

standard deviation. Finally for the time jitter term 

i' i 
( 1 3 )  E [exp(-j2Mm( T - T))] = 1 if i = i' 

Now inserting the results of Equations (11) - (13) into Equation ( 5 )  and 

rearranging one obtains 

where 

and 

1 2 *)  - y  1 (211fm) 2 ( 0  2 exp t -  T ( a  it + ai 
T 'm 'm 

This is the resultant autospectrum where the statistics of jitter are defined 

in terms of the standard deviation of the variable quantities - pulse time, 
amplitude, and shape. 

portion whereas (G ) defines a "random" portion of G . This is dealt with 
The term (Gm)d, defines a so-called "discrete" 

m r  m 

below . 
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Special Processing 

In the proceeding analyses To of Equation ( 3 )  is assumed constant for 

clarity of presentation. 

at all) keyed to a rotor one-per-rev signal through say triggering error and 

thus T would be variable between samples k, i.e. T = T in Equation 

However, even if data samples were not perfectly (or 

0 o k o  

( 3 ) ,  it is readily shown that Equation (14) for Gm is unchanged. 

Such keying, however, would have impact on certain alternate spectral 

definitions one might employ to study particular noise mechanisms. Of 

interest is the spectra corresponding to averaged time histories. As 

indicated in the introduction, such spectra may be produced with the intent to 

remove broadband noise content . This "discrete" or deterministic 
spectrum, call this (GmId, is found to be 

I 

I 
P -  

U where T is the standard deviation of T (assuming normal and 
0 0 

independent variability) and (GmId is that from Equation (14). In 

parallel one can define a "random" spectrum (Gm)i equal 

where Gm is that from Equation (14). So only when variations in T are 
0 

minimized do (Gm)i = (Gm)d and (G ) '  = (GmIr. It is seen that m r  

Equations (15) and (16) relate the degree of success one can have in 

processing to separate "discrete" from "random" noise, to the extent such 

. .success depends on keying accuracy. Equation (14) can be employed to help 
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determine t o  what degree one can u t i l i z e  t h e  r e s u l t s ,  even wi th  a c c u r a t e  

keying, f o r  any phys ica l  i n t e r p r e t a t i o n  of t h e  s e p a r a t i o n  s p e c t r a l  d a t a .  

The spectrum for a s i g n a l  with j i t t e r  is now compared t o  t h a t  spectrum 

obtained f o r  an i d e a l  case where there is no j i t t e r .  For t h e  no j i t ter  case, 

a l l  u ' s  are ze ro  and i f  t he  pu l ses  a re  i d e n t i c a l  f o r  d i f f e r e n t  i 's  then 

Equation (14) renders  Equation (4 ) .  For t he  comparison it is assumed f o r  t h e  

j i t t e r  case t h a t  a l l  pu lses  are of the same average shape, i.e. 

i 
C exp[-ja$m] = .Cm exp[-ja$m). Addi t iona l ly ,  i t  is  assumed any i 

a m  

amplitude v a r i a t i o n s  are uniform for  each pulse  so no shape charges occur ,  

on ly  o v e r a l l  ampl i tudes ,  i.e. u i i s  cons t an t  ( s ay  uc/c) and u = 0. 
i c /  CE i* 

m ym 

Also t he  time v a r i a b i l i t y  f o r  the  d i f f e r e n t  pu l se s  i are the  same, so 

u = u . So f o r  t h e  j i t t e r  case from Equation (14) 
T 

i T  

G m = (Gm)d + (GmIr 

U 
(Gm)r = bllaCm[l 2 + (<)' - exp [-(Znf u 1'1; m T  

and 

EO f o r  m # bll, 2 b t ,  3 bll, . 
These s p e c t r a  and t h a t  of Equation (4)  are presented i n  Figure 3 f o r  t he  f i r s t  

m = 34 frequency bands. The l e v e l s  a r e  normalized i n  each band by 

2 
2(bL C ) /T which correspond, a t  harmonics of f t o  t h e  l e v e l s  of Gm 

a m  b y  

for t h e  i d e a l  case of no j i t t e r  (Equation (14)).  The d a t a  period T is  t aken  

as equa l  t o  t h e  r o t o r  period Tr (ll-l), t h e  number of r o t o r  b lades  are fou r  

(b=4), and t h e  t i m e  v a r i a b i l i t y  is large a t  uT/T = 0.01. For c l a r i t y ,  
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the amplitude variability uc is assumed zero so only the effect of uT is 

shown. In general the u contribution to the comparison would be 

10 log [(uc/c) /bit]. 

would render a -12dB contribution for all m bands. 

C 

2 For the present be14 case, a value of uc/c=0.5 

Figure 3 shows the effect of pulse time jitter to be significant for the 

spectrum Gm. 

substantially reduced and the spectra becomes broadband in appearance with 

levels approaching -6 dB (-10 log blt) below the no jitter case for large m. 

Note in this normalized presentation that the integrated levels f o r  the 

spectra with and without jitter are equal, promoting the view that jitter 

merely shifts the spectral energy content from the harmonics of fb to the 

side bands. However, this does not strictly hold, for as indicated in 

Equation ( 1 7 )  for the unnormalized Gm, the level of each band m is governed 

by the coefficient amplitude .Cm for that band, not that of the nearest 

band corresponding to a harmonic of f b e  

The levels of the individual blade passage harmonics are 

Conclusions 

The present results explain quantitatively the spectral smearing which 

occurs when simple jitter is present in the acoustic signals. The results can 

be applied diagnostically in the identification and separation of source 

contributions to the rotor noise spectra. Applicability of the present 

equations is direct when discrete or impulsive noise dominates the noise 

field. In the presence of additional discrete noise with differing pulse 

shape and jitter statistics, as well as the presence of substantial broadband 

noise, a precise analysis requires additional steps. Here appropriate terms 

can be readly added to the modelled pressure transform kpm of Equation ( 3 )  

prior to determining the autospectrum or special spectra processed for 

diagnostic purposes. 
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